\displaystyle f{{\left({t}\right)}}\xrightarrow{\text{LT}}{\int_{ {0}}^{\infty}} f{{\left({t}\right)}}{e}^{ -{{st}}}{\left.{d}{t}\right.}
-
\displaystyle\delta{\left({t}\right)}\xrightarrow{\text{LT}}{1}
-
\displaystyle{u}{\left({t}\right)}\xrightarrow{\text{LT}}\frac{1}{{s}}
-
\displaystyle{t}\xrightarrow{\text{LT}}\frac{1}{{s}^{2}}
-
\displaystyle{t}^{n}{\left({n}>{0}\right)}\xrightarrow{\text{LT}}\frac{n!}{{s}^{{{n}+{1}}}}
-
\displaystyle{e}^{ -{{at}}}\xrightarrow{\text{LT}}\frac{1}{{s + a}}
-
\displaystyle \sin{{b}}{t}\xrightarrow{\text{LT}}\frac{b}{{s}^{2}+{b}^{2}}
-
\displaystyle \cos{{b}}{t}\xrightarrow{\text{LT}}\frac{s}{{s}^{2}+{b}^{2}}
-
\displaystyle{e}^{ -{{at}}} \sin{\omega}{t}\xrightarrow{\text{LT}}\frac{\omega}{{\left({s}+{a}\right)}^{2}+{w}^{2}}
-
\displaystyle{e}^{ -{{at}}} \cos{\omega}{t}\xrightarrow{\text{LT}}\frac{s+a}{{\left({s}+{a}\right)}^{2}+{w}^{2}}
-
\displaystyle\frac{ df{{\left({t}\right)}}}{{\left.{d}{t}\right.}}\xrightarrow{\text{LT}}{s}{F}{\left({s}\right)}- f{{\left({0}\right)}}
-
\displaystyle\int f{{\left({t}\right)}}{\left.{d}{t}\right.}\xrightarrow{\text{LT}}\frac{1}{{s}}{F}{\left({s}\right)}
-
\displaystyle f{{\left({t}-{a}\right)}}\xrightarrow{\text{LT}}{e}^{ -{{as}}}{F}{\left({s}\right)}